Archive for the ‘Conferences’ Category

We are getting ready for two conferences this month: ARF Re: Think in New York and Social Media Forum in London.

ARF Rethink

With a showcase of 50+ groundbreaking studies (cross-platform, social media, mobile research and more), 100 high-profile presenters, 2,500 industry peers (from P&G, Unilever, Apple, and Facebook along with many others) it’s looking like it will be a really innovative and exciting event.

The Face NY team will be manning the booth and our friends from Pulsar will demo their social intelligence platform.  Drop by to find out how we can help you better understand and connect with your consumers by combining qualitative insight, real time data and smart thinking.

Register and check out the details here.

 

SMWF 2

Social Media Forum (#SMWF) Europe is a social and digital marketing conference which examines the latest developments in social marketing and how it sits within an organisation. #SMWF launches in London on 31 March – 1 April 2014.

We’re looking forward to talks from many industry thought leaders on how to drive engagement, manage brand image and understand great customer service. To name but a few: McDonalds, BBC, Walt Disney, Lithium, Philips, Unicef, Vodafone, Amnesty International, Wall Street Journal and Sky are all sharing their knowledge.

Our Chief Innovation Officer, Francesco D’Orazio (@abc3d) will join the panel discussion on ‘Interdepartmental cooperation for a unified social campaign panel’ alongside participants from Sony, Barclays, Yahoo and RSA. Discussion will touch on the following questions:

  • The practicalities of structuring and implementing a multi-channel social campaign
  • How to create unity across departments and resolve issues for the best outcome
  • Examining new trends and platforms in social and evaluating where the effort should be focussed
  • Looking at how different social platforms fit together with more traditional media

Social media expertise and top-level strategic advice is what we are all about so we’re really looking forward to this discussion.

The FACE and Pulsar teams will also be there to demo Pulsar and answer any questions.

Hope to see you there. Check out the event’s website for more details.

We’ve just come back from Insight Innovation Exchange Europe. And what an inspiring two days! From Mark Earls and John Willshire making the audience work with Artefact cards to identify innovations needed in market research, to inspiring presentations on neuromarketing, gamification and mobile, there’s a lot of exciting ideas to take away.

We hope to have contributed to this ourselves: Our CEO, Andrew Needham and our Research Manager Jess Owens shared their thoughts on Using social media research for agile, adaptive customer intelligence” in a joint presentation at 17:00 on the first day of the conference.

Following a classic Andrew introduction – getting the audience to stand up and be agile, by squatting up and down doing an agility exercise – they talked about:

  1. What does “agile” research really mean? It’s not just about quick thinking – it’s about empowering clients to take action.
  2. Lessons from agile software development: it’s all about the feedback loop
  3. Why agile social media research? Jess shared stories from two social media crises, showing how real-time social media listening can get research a seat at the table
  4. Partnership with clients to build an agile, actionable research programme – aka is the weekly report always the best way to share research insights? We talk about the “client as superuser”
  5. The true power of the brand tracker dataset - how the unprompted nature of social media mentions enables highly adaptive and flexible research, providing the ability to instantly answer questions brands didn’t even know they had

Here is their presentation, for those of you who couldn’t make it:

 

We’d also like to congratulate our colleagues from Pulsar for winning the first DIVA (Data Visualisation Award) for our How Video Spreads Twitter network visualisation:

We tracked the conference on Pulsar (of course!). Here’s how the 1,711 IIeX-related tweets performed over the two days of the conference:

Conversation volumes by hour:

IIeX Volume per hour

Most active Twitter users:

IIeX Influencers

 

Most shared links:

1. Pulsar’s winning entry to the DIVA awards 

2. DIVA Awards Panel announcement

3. IIeX Europe Homepage 

4. #IIeX Focus Series – Technology & Market Research (2 of 5): Social Media

5. #IIeX Focus Series – Technology & Market Research (3 of 5): Photo & Video

 

*

Bad Andrew picture

Andrew Needham is a Founding Partner and CEO of FACE Research. A pioneer in the use of social data in qualitative and quantitative research to deliver a holistic view of the consumer, Andrew is leading the global expansion of FACE. Read more of Andrew’s thoughts here. Or reach out to him on LinkedIn or Twitter.

 

Jess Owens profile photo

Jess Owens is a social media researcher in FACE’s London office. As one of the first members of the Global Social Insight team, she has pioneered new research methods with social data, from audience mapping, channel effectiveness studies and studying social media virality and content diffusion. Get in touch with Jess via LinkedIn or Twitter – she tweets for us @FaceResearch as well as from her personal account, @hautepop

 

insight-innovation-exchange 400px

That’s right – the London team are off to Amsterdam on 19-20 February to attend IIEX-EU 2014 – the Insight Innovation Exchange European conference.

They say, “The Insight Innovation eXchange connects seasoned practitioners with new thinkers, human behavior experts with technology, and the private and public sectors. We set the stage for connections that help mash ideas and technology together, knowing that those interactions will help bring about the next rEvolution in marketing insights”

Ideas and technology – that’s what’s we’re about!

So here’s quick rundown of the FACE team members going and what we’ll be sharing with the conference:

  1. Research manager Jess Owens will be presenting on Wednesday 19th at 17:00, talking about “Using social media research for agile, adaptive customer intelligence”. If you’re not able to attend the conference, check out her webinar on Thursday 13th Feb to hear more!
  2. We’ll also be demoing our social media intelligence platform Pulsar on an exhibition stand – led by global sales manager James Cuthbertson.We’ll be tracking the #IIEX hashtag throughout the event, so come and visit him to discover the topics, speakers and issues driving the most buzz among conference attendees. Here’s our findings from last year’s conference.
  3. Finally FACE’s newest arrival, business development director James Hirst will also be attending for meetings and one-to-one discussions.
  4. And of course stay tuned for tweets from @FaceResearch!

We look forward to seeing some of you there.

 

Digital technology and social media have dramatically speeded up the pace of brand-customer relationships.

They also speed up the pace of brand crises.

But has market research insight delivery kept pace?

Clients and agencies have learnt that you need new research tools, and in this webinar we’ll be talking about one of them: social media analytics and insight. But these new technologies often feed into old processes and old business structures, allowing much of the dynamism of real-time data to be lost.

That’s why we want to talk to you about agile insight.

Social media researcher Jess Owens will be presenting a  a 3o minute webinar on Thursday 13 February (4pm GMT / 11 am EST) – join her to find out more.

It’ll preview her talk at the Insight & Innovation Exchange conference in Amsterdam on 19 February – and offer the chance to ask questions about her experiences managing helping her clients – from mobile, banking and retail – manage crises and consumer backlash in social.

GoToWebinar

At 9am one morning I got a call from my client at O2: “We’re having a crisis. Total network outage. There’s an executive board meeting in an hour and we need to give them a total overview of the entire situation so that we can plan our response.”

In this webinar we’ll cover 4 topics:

  1. Social media insight for crisis management - what we’ve done for clients from O2 to banks to major retailers, and where the biggest value has been for our clients
  2. Brand threats and longer-term issue management – how can social help?
  3. Partnership with clients to build an agile, actionable research programme – aka is the weekly report always the best way to share research insights? Not necessarily
  4. The true power of the brand tracker dataset - how the unprompted nature of social media mentions allows far adaptive and flexible research, providing the ability to instantly answer questions brands didn’t even know they had

Sounds good?

Sign up here on GoToWebinar for the session on Thursday 13 February (4pm GMT / 11am EST). We look forward to seeing you there!

Or if you’ve got any questions in the interim, get in touch with Jessica via LinkedIn or Twitter – she tweets for us @FaceResearch as well as from her personal account, @hautepop

*

Jess Owens profile photo

Jess Owens is a social media researcher in FACE’s London office. As one of the first members of the Global Social Insight team, she has pioneered new research methods with social data, from audience mapping, channel effectiveness studies and studying social media virality and content diffusion. She’s presented several workshops at ESOMAR about social media research  methods, and will be speaking at IIEX on 19 February.

In the first part of this blog series (How Stuff Spreads | How Videos Go Viral part 1: Models of Virality) we identified 7  dimensions that describe and quantify virality. Although none of the variables alone proved able to define a viral phenomenon on their own, they correlated into two models of viral diffusion. One model we called “spike” – the sudden ‘explosion’ of sharing activity – and the other we called “growth”, where popularity is a slower and steadier grower.

Spikers vs Growers

In this blog post, our Chief Innovation Officer and  VP Product Francesco D’Orazio using social network analysis looks at how the audience composition and structure influence the way video spreads.

What makes a viral video spread in one or other of these ways? Most studies on the subject  focus on virality as a feature of the content. But what if virality is (also) a feature of the audience? Can the demographics and the structure of the audience for a video explain how it goes viral?

To recap, we were studying 4 videos:

In this blog post we will show how we analysed the demographics and the social network properties of each video’s audience to understand better how they spread.  Read on for some of our best network graphs yet and some fascinating findings…

Metric #1: Amplification and influence

The first thing we looked at is Amplification. Amplification is a measure of the average “visibility” of the tweets carrying the meme. Tweets with higher visibility imply a more influential status of the author who posted them. Can the influence level of the audience of a meme explain its slower or faster diffusion?

Slide51

Amplificiation is similar across all audiences. It’s fractionally lower for the Turkish protest video and for Ryan Gosling, the first primarily shared in Turkey, the second appealing to a slightly newer (though still very active) Twitter audience. And it’s slightly higher for Dove Real Beauty Sketches and Commander Hadfield. In both cases the variation doesn’t correlate with the virality model of the meme.

Metric #2: How international were the audience?

So the next hypothesis to explain the velocity of the memes was the geographic distribution of the audience. We quantified this as Globality: the percentage of meme shares coming from countries other than the main country. So does the “internationalness” of a video affect its virality? Does a more global or a more local meme spread faster?

Slide52

The answer is again, no. The Turkish protest video was “local” but so was Ryan Gosling – and one spread instantly but the other peaked on day 18. Since both Amplification and Globality seemed not to correlate with one or the other model of virality, we then looked at the demographics engaged with each video.

Metric #3: Demographics.

Does the demographics of the audience affect the way content goes viral? Do young, techie male students from global cities push a meme faster than, say, middle aged housewives from rural Germany?

We used Bayesian statistical inference to analyse the demographics of the audience. This method uses the available information on Twitter and matches it to a sample audience interviewed in real life to get known demographics, across the various countries involved in the study. Below is a summary of the most prominent demographics traits of the four audiences:

Slide54

Slide55

Slide57

Slide56

Although students and global cities feature heavily in all audiences, there doesn’t seem to be any direct correlation between virality models and demographic traits. Instead the demographics are completely different for each meme. Not to mention that students represent 33% of the Ryan Gosling audience, the slowest meme of all – so it seems that youth demographic probably isn’t necessarily a critical cause for a video to go viral quick.

And now some Social Network Analysis…

The audience gets more interesting when you start to look at its social structure. As we couldn’t find any correlation between demographic traits and virality models, we turned to the structure of the audience by mapping the social graph of the people who shared the video.

Your ‘social graph’ is the network of the people you know, and how they’re connected to each other. Because we were studying Twitter sharing of videos, we had easy access to this data through two variables: who each video sharer was following on Twitter,  and who they’re followed by. In technical terms, this gives us a ‘directional’ network with two possible ways for nodes to be connected.  Analysing these connections highlighted some really interesting differences.

Metric #4: Degree, or ‘social connectedness’

First of all we looked at the Average Degree of each audience network. Each person in a network can be assigned a ‘degree’ value: that’s a count of the number of connections they have to other people in the network. We were studying how videos spread in Twitter, so those connections are easy to identify: it’s who they’re following and who they’re followed by.

Interestingly enough, the audiences of the Spiker memes (Commander Hadfield and Turkish protests) are showing the highest levels of interconnectedness – while the audiences of the Grower memes (Dove Real Beauty and Ryan Gosling) show the lowest.

Slide59

Metric #5: Modularity, or “fragmentedness”

The memes that spread faster could do so because the audiences that engaged with them were highly interconnected. But how are this connections organised? To do this we used another social network analysis metric called Modularity. This describes how fragmented the network is and how many sub-communities can be detected based on the density of mutual social connections within clusters of users.

Slide61

The lower the modularity, the less fragmented the audience is into sub-communities, the more cohesive it is and the easier to reach it is. Not surprisingly, the audiences of the Spiker memes are the most cohesive ones, while the audiences of the Grower memes are the most fragmented ones. Cohesiveness and fragmentation becomes much easier to understand when looking at the total number of communities identified within each audience.

Metric #6: the number of Communities

Social network analysis tools allow you to measure the number of ‘communities’ in a social network. Tools such as Gephi provide access to algorithms, such as the Modularity one, that can quantify how people’ s connections tend to gather together into definable ‘clusters’ of closely-connected groups.

Slide63

Slide64

Slide66

Slide65

Whereas the audience of Commander Hadfield is split into 130 communities and the audience of the Turkish protests is split into 51, the audience of Ryan Gosling is split into 382 communities and the audience of Dove Real Beauty Sketches into 1356.

This has a strong impact on the ability of memes to spread through the audience network. Whereas reaching out to just 2 communities is enough to reach 50% of the audience of the Turkish protest, spreading the news to 50% of the audience of Dove Real Beauty Sketches requires reaching out to 8 communities. It follows, then, that where a meme has to travel through more communities to reach people, it moves a little slower – in a ‘grower’ model. By contrast, memes ‘spike’ where they take off in a small number of communities very quickly.

Slide67

So what have we learnt so far?

Yes, the audience’s social structure – the way that people are connected within in – shapes the way something goes viral.

Audiences with a low Average Degree, low connectedness or low density, are more fragmented. The more an audience is fragmented into sub-communities (high modularity of the audience network), the slower a video or piece of content spreads through it . But what causes a higher or lower fragmentation within a specific audience?

Understanding the communities within an audience

To answer this question we tried to measure the demographic diversity of the audiences. The assumption being that an audience showing a higher demographic diversity will also be more fragmented and therefore slower to transmit viral videos.

So we ran the demographics analysis again on the four audiences: this time running it separately on each of the top 5 community clusters identified within each audience. You can see below the results for the top 2 clusters of each audience:

Slide69

The audiences of Ryan Gosling and Dove Real Beauty Sketches show higher demographic diversity, while the audiences of Commander Hadfield and Turkish protests show lower demographic diversity. So high demographic diversity correlates with high modularity and slower meme velocity after all. How is this useful?

How the audience affects How Stuff Spreads

To start with, this means that a meme which is appealing to a broad demographic is probably going to spread slower than a meme that is appealing to a narrow demographic.

This also means that a meme with a broad demographic appeal is going to be more expensive to make go viral. Expensive because it will require more intense paid for seeding/advertising in order to reach out to a higher number of disconnected communities (Dove Real Beauty Sketches is a good example). It may also need persistent replication of the meme to break through the attention of multiple audiences who might not take notice the first time (Ryan Gosling won’t eat his cereal is a good example).

Finally, the organisation of the audience in sub-communities means that influencers lists by subject are pretty useless when trying to reach out to an audience. For example, your top 100 influencers for beauty might well all be part of the same two communities out of the 1356 total communities that make the Dove audience. So identifying gatekeepers and influencers is useful only once the audience you want to reach has been mapped and its communities identified.

The social dynamics of virality

In our previous post we identified and defined two models of virality: Spike vs. Growth.

From this audience and community analysis, we can now augment that with a 3-part model of how content is seeded through groups of people:

1) TRIGGER: A higher than average emotional response to the content triggers an impulse to share

2) VALIDATION: The impulse to share gets then validated against the community the user is part of. This validation happens both in terms of topicality (is this of interest to my audience?) and timing (has anyone else already shared this within my circles?). See this paper for more research on this aspect

3) ESCALATION: The gatekeepers (e.g. media channels, celebrities etc) share the meme helping it reach the tipping point within a specific community. The tipping point is when every member of the community is likely to receive the meme from another member of the community.

Once everyone’s seen the meme and starts to share it on themselves… That’s when you’ve got virality on your hands!

 So what does this mean for you?

Content that generates an emotional reaction is more likely to go viral. People share to say something about themselves. Emotional content helps them figure out easily what it is they are saying about themselves by sharing it.

Picture the audience your content is going to be appealing to, and find them in social media. Learn who they are and what makes them tick.

Your online audience is not a monolith. Online audiences are organised in sub-communities and congregate around key demographics variables such as age, profession, passions and interests.

Map your audience and identify the key communities that are going to help you reach out to at least 50% of your audience.

Once the communities are mapped,  identify the key gatekeepers by community and the connectors between key communities. This will help you reduce the outreach effort.

If your content is going to appeal to a broad demographic expect a longer run and make sure you have the right resources in place for seeding and advertising to a fragmented and  harder to reach audience.

Good luck.

*

Previous posts in this series:

Found this interesting? Got viral content of your own that you want to understand? Check out the tool we used for this study, Pulsar (PulsarPlatform.com) and contact us to arrange a demo – send an email to James.Cuthbertson@Facegroup.com and we’ll be in touch in no time.

Or get in touch with the study authors, Francesco D’Orazio (@abc3d /LinkedIn) and  Jess Owens (@hautepop / LinkedIn).